未曉妃
安科瑞電氣股份有限公司 上海嘉定 201801
1 系統整體設計
系統整體結構如圖1所示,由參量采集模塊、參量匯集模塊、數據傳輸模塊、云平臺及客戶端組成。參量采集模塊負責連接傳感器,感知火情現場;參量匯集模塊負責匯集與上傳火情現場數據;數據傳輸模塊作為通信橋梁,負責參量匯集模塊與云平臺之間的信息傳遞;云平臺則負責運算及處理數據信息,計算得出火災發生的概率,并發送信息至客戶端,客戶端可相應呈現火災預警信息。
2 硬件構成
單參量采集模塊、參量匯集模塊硬件構成如圖2所示。火情現場數據的采集由單參量采集模塊和參量匯集模塊共同完成。
參量采集模塊包括傳感器、信號處理電路、MCU,并通過工業標準接口(232、485、I2C、SPI等)與參量匯集模塊連接。根據火情現場情況,選取煙霧、溫度、火焰、電參數(包括入戶母線電壓、電流、有功功率、無功功率或功率因數)等傳感器進行數據采集,經信號處理電路處理后送入MCU,再通過標準接口。根據約定的通訊協議,將火情現場數據傳輸給參量匯集模塊。參量匯集模塊以無線MCU(ZigBee終端節點)為核心。通過標準接口與單參量采集模塊有線連接,接收單參量采集模塊發送的火情現場數據,再通過ZigBee網絡轉發給
ZigBee協調器。數據傳輸模塊結構如圖3所示,主要由ARM微處理器.ZigBee協調器以及NB-IoT模塊組成。
各參量匯集模塊作為ZigBee終端節點加入網絡,ZigBee協調器接收多個參量匯集模塊上傳的火情現場數據。ARM微處理器負責統籌處理數據本地傳輸、遠程傳輸,以及相應的解析及轉換,NB-IoT模塊將火情現場數據等信息遠程發送至云平臺進行處理。
3軟件設計
3.1數據采集
數據采集過程完成對火情現場數據的采集,其軟件流程如圖4所示。
初始化完成后,參量采集模塊需要通過相應的傳感器采集現場數據,處理完相關數據后,將數據傳輸至參量匯集模塊。
3.2數據傳輸
數據傳輸是指將參量匯集模塊接收到的多組火情現場數據上傳至云平臺的過程,其軟件流程如圖5所示。
ZigBee協調器檢測周圍網絡狀態,建立網絡。參量匯集模塊作為終端節點入網后,將數據轉發至ZigBee協調器,協調器接收到上傳的火情現場數據,通過串口通信將數據發送給ARM微處理器,ARM微處理器對數據解析、打包后,由NB-IoT模塊上傳至云平臺完成數據處理,*終實現火災預警。
3.3數據處理
數據處理是指在云平臺對上傳的火情現場數據進行運算與處理的過程,其軟件流程如圖6所示。
云平臺完成初始化后,首先接收火災監測現場的位置以及火情現場數據等信息,運算與處理上傳數據中的多個變量,隨后建立火災現場狀態與多變量參數之間的非線性數學模型。基于該模型,依據采集的多變量數據,通過智能算法計算得出火災發生的概率,然后發送火災預警信息至客戶端。
4智能識別算法
本文提出的火災預警智能識別算法,可合分析傳感器采集的多個變量,基于半監督學習方法,自動實現變量分類,并通過求解算法,建立火災現場狀態與多變量參數之間的非線性數學模型。基于該模型,依據采集的多變量數據,*后得出火災發生的概率,達到預警的目的。算法包含兩部分。
(1)基于稀疏編碼的結構特征提取方法
其對應的學習網絡結構如圖7所示。
記樣本數量為N,樣本維度為D,則第i個樣本可表示為ai=,則自動編碼器參數訓練的目標為輸出數據接近輸入數據,即
:
式中=為輸入樣本集合狙為相應的輸出值集合。
(2)多類SVM的實現
5安科瑞電氣火災監控系統
(1)概述
Acre1-6000電氣火災監控系統,通過嚴格的EMC電磁兼容試驗,保證了該系列產品在低壓配電系統中的安全正常運行,現均已批量生產并在全國得到廣泛地應用。該系統通過對剩余電流、過電流、過電壓、溫度和故障電弧等信號的采集與監視,實現對電氣火災的早期預防和報警,當必要時還能聯動切除被檢測到剩余電流、溫度和故障電弧等超標的配電回路;并根據用戶的需求,還可以滿足與AcreIEMS企業微電網管理云平臺或火災自動報警系統等進行數據交換和共享。
(2)應用場合
適用于智能樓宇、高層公寓、賓館、飯店、商廈、工礦企業、石油化工、文教衛生、金融、電信等領域。
(3)系統結構
(4)系統功能
監控設備能接收多臺探測器的剩余電流、溫度信息,報警時發出聲、光報警信號,同時設備上紅色“報警”指示燈亮,顯示屏指示報警部位及報警類型,記錄報警時間,聲光報警一直保持,直至按設備的“復位”按鈕或觸摸屏的“復位”按鍵遠程對探測器實現復位。對于聲音報警信號也可以使用觸摸屏“消聲”按鍵手動除
當被監測回路報警時,控制輸出繼電器閉合,用于控制被保護電路或其他設備,當報警除后,控制輸出繼電器釋放。
通訊故障報警:當監控設備與所接的任一臺探測器之間發生通訊故障或探測器本身發生故障時,監控畫面中相應的探測器顯示故障提示,同時設備上的黃色“故障”指示燈亮,并發出故障報警聲音。電源故障報警:當主電源或備用電源發生故障時,監控設備也發出聲光報警信號并顯示故障信息,可進入相應的界面查看詳細信息并可解除報警聲
當發生剩余電流、超溫報警或通訊、電源故障時,將報警部位、故障信息、報警時間等信息存儲在數據庫中,當報警解除、排除故障時,同樣予以記錄。歷史數據提供多種便捷、快速的查詢方法。
(5)配置方案
6結語
本文利用參量采集模塊采集火情現場數據并上傳至參量匯集模塊,通過ZigBee網絡和NB-IoT模塊將數據上傳至云平臺,云平臺合分析傳感器采集到的多個變量,并通過求解算法,得出火災發生的概率并將其發送至客戶端,據此提醒工作人員及時采取措施。基于該系統,及時預警火情現場,提前預判。從而減少人員傷亡和財產損失。
作者介紹
未曉妃,安科瑞電氣股份有限公司,178 2117 0311,主要研究方向為微電網能效管理和環保安全用電。
掃一掃 微信咨詢
©2024 安科瑞電子商務(上海)有限公司 版權所有 備案號:滬ICP備18001305號-12 技術支持:智慧城市網 sitemap.xml 總訪問量:256930 管理登陸